AskDefine | Define lah

Dictionary Definition

lah n : the syllable naming the sixth (submediant) note of a major or minor scale in solmization [syn: la]

User Contributed Dictionary

English

Etymology 1

An anglicised spelling of la.

Noun

  1. alternative spelling of la

Etymology 2

From the (Pinyin: lè / là).

Particle

lah
  1. In the context of "Singlish": Placed at the end of a sentence for emphasis.
    • Don’t think so much lah!

Old English

Etymology

Adjective

lāh

Extensive Definition

Lithium aluminium hydride (LiAlH4), commonly abbreviated to LAH, is a reducing agent used in organic synthesis. It is more powerful than the related reagent sodium borohydride due to the weaker Al-H bond compared to the B-H bond. It will convert esters, carboxylic acids, and ketones into the corresponding alcohols; and amide, nitro, nitrile, imine, oxime, and azide compounds into the amines.

Availability and handling

LAH is a white solid but commercial samples are almost always grey due to contamination with traces of aluminium metal. This material can be purified by recrystallization from diethyl ether. Large-scale purifications employ a Soxhlet extractor. Commonly, the impure gray material is used in synthesis, since the impurities are innocuous and easily separated from the organic products. The pure material is pyrophoric. Some commercial materials contain mineral oil to inhibit reactions with atmospheric moisture, but more commonly it is packed in moisture-proof plastic sacks.
LAH violently reacts with water, including atmospheric moisture. The reaction proceeds according the following idealized equation:
LiAlH4 + 4 H2O → LiOH + Al(OH)3 + 4 ↑H2
This reaction provides a useful method to generate hydrogen in the laboratory. Aged, air-exposed samples often appear white because they have absorbed enough moisture to generate a mixture of the colorless compounds lithium hydroxide and aluminium hydroxide.

Preparation

LAH was first prepared from the reaction between lithium hydride (LiH) and aluminium chloride:
4 LiH + AlCl3 → LiAlH4 + 3 LiCl
In addition to this method, the industrial synthesis entails the initial preparation of sodium aluminium hydride from the elements under high pressure and temperature:
Na + Al + 2 H2 → NaAlH4
LAH is then prepared by metathesis reaction according to:
NaAlH4 + LiCl → LiAlH4 + NaCl
which proceeds in a high yield of LAH. LiCl is removed by filtration from an ethereal solution of LAH, with subsequent precipitation of LAH to yield a product containing around 1% w/w LiCl. Despite handling problems associated with its reactivity, it is even used at the small-industrial scale, although for large scale reductions the related reagent sodium bis(2-methoxyethoxy)aluminium hydride, commonly known as Red-Al, is more often used. For such purposes it is usually used in solution in diethyl ether, and an aqueous workup is usually performed after the reduction in order to remove inorganic by-products.
LAH is most commonly used for the reduction of esters and carboxylic acids to primary alcohols; prior to the advent of LiAlH4 this was a difficult conversion involving sodium metal in boiling ethanol (the Bouveault-Blanc reduction). Aldehydes and ketones can also be reduced to alcohols by LAH, but this is usually done using milder reagents such as NaBH4. α,β-Unsaturated ketones are reduced to allylic alcohols. When epoxides are reduced using LAH, the reagent attacks the less hindered end of the epoxide, usually producing a secondary or tertiary alcohol. Epoxycyclohexanes are reduced to give axial alcohols preferentially.
rect 5 12 91 74 alcohol rect 82 178 170 240 epoxide rect 121 9 193 69 alcohol2 rect 337 1 414 60 alcohol3 rect 458 55 526 117 alcohol4 rect 170 151 234 210 aldehyde rect 141 259 207 279 nitrile rect 135 281 196 300 amide rect 128 311 204 366 amine1 rect 264 268 339 334 carboxylic acid rect 457 362 529 413 alcohol5 rect 381 255 433 273 azide rect 469 244 525 269 amine2 rect 321 193 401 242 ester rect 261 141 320 203 ketone
desc none
  1. Notes:
  2. Details on the new coding for clickable images is here: mw:Extension:ImageMap
  3. This image editor was used.
Using LAH, amines can be prepared by the reduction of amides,, oximes, nitriles, nitro compounds or alkyl azides.
Lithium aluminium hydride also reduces alkyl halides to alkanes, although this reaction is rarely employed. Alkyl iodides react the fastest, followed by alkyl bromides and then alkyl chlorides. Primary halides are the most reactive followed by secondary halides. Tertiary halides react only in certain cases.
Lithium aluminium hydride does not reduce simple alkenes, arenes, and alkynes are only reduced if an alcohol group is nearby.

Inorganic chemistry

LAS is widely used to prepare main group and transition metal hydrides from the corresponding metal halides.

Thermal decomposition

At room temperature LAH is metastable. During prolonged storage it can slowly decompose to Li3AlH6 and LiH. This process can be accelerated by the presence of catalytic elements e.g. Ti, Fe, V.
When heated LAH decomposes in a three step reaction mechanism.
LiAlH4 → ⅓ Li3AlH6 + ⅔ Al + H2 (R1)
⅓ Li3AlH6 → LiH + ⅓ Al + ½ H2 (R2)
LiH + Al → LiAl + ½ H2 (R3)
R1 is usually initiated by the melting of LAH around a temperature of 150-170oC immediately followed by decomposition into solid Li3AlH6. From 200-250oC Li3AlH6 decompose into LiH (R2) which subsequently decompose into LiAl above 400oC (R3). R1 is effectively irreversible, because LiAlH4 is metastable. The reversibility of R2 has not yet been conclusively established. R3 is reversible with an equilibrium pressure of about 0.25 bar at 500oC. R1 and R2 can occur at room temperature with suitable catalysts.
According to reactions R1-R3 LiAlH4 contains 10.6 wt% hydrogen thereby making LAH a potential hydrogen storage medium for future fuel cell powered vehicles. Cycling only R2 would store 5.6 wt% in the material in a single step (comparable to the two steps of NaAlH4).

Solubility data

LAH is soluble in many etheral solutions. However, it may spontaneously decompose due to the presence of catalytic impurities, though, it appears to be more stable in THF. Thus, THF is preferred over e.g. diethyl ether even despite the lower solubility.
Note that lithium aluminium hydride should not be used with water, which reacts violently as described by the following equation.
LiAlH4 + 4 H2O → Li+ + Al3+ + 4 OH- + 4 H2

Crystal structure

The crystal structure of LAH belongs to the monoclinic crystal system and the space group is P21c. The crystal structure of LAH is illustrated to the right. The structure consists of Li atoms surrounded by five AlH4 tetrahedra. The Li+ centers are bonded to one hydrogen atom from each of the surrounding tetrahedra creating a bipyramid arrangement. The unit cell is defined as follows: a = 4.82, b = 7.81, and c = 7.92 Å, α = γ = 90° and β = 112 °. At high pressures (>2.2GPa) a phase transition occurs to give β-LAH.

Thermodynamic data

The table summarizes thermodynamic data for LAH and reactions involving LAH, in the form of standard enthalpy, entropy and Gibbs free energy change, respectively.

References

Further reading

  • Hydrides of the elements of main groups I-IV
  • Complex Hydrides and Related Reducing Agents in Organic Synthesis
  • Handbook of chemistry and physics
  • Organic Chemistry with Online Learning Center and Learning by Model CD-ROM on-line version
  • Chapter 5 in Hydrogen Storage Materials with Focus on Main Group I-II Elements Full text version
lah in Arabic: هيدريد ألومنيوم ليثيوم
lah in German: Lithiumaluminiumhydrid
lah in French: Tétrahydruroaluminate de lithium
lah in Japanese: 水素化アルミニウムリチウム
lah in Polish: Tetrahydroglinian litu
lah in Portuguese: Hidreto de alumínio e lítio
lah in Russian: Алюмогидрид лития
lah in Serbian: Тетрахидроалуминат литијума
lah in Swedish: Litiumaluminiumhydrid
lah in Chinese: 氢化铝锂
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1